Impacts of magnetic permeability on electromagnetic data collected in settings with steel-cased wells

Lindsey J. Heagy & Douglas W. Oldenburg University of British Columbia - Geophysical Inversion Facility

3DEM-7 Symposium

motivation

CO₂ sequestration

geothermal

hydrocarbons

wastewater injection

wellbore integrity

geophysics in urban settings

grounded source experiments

steel: highly conductive, magnetic

helps excite & detect targets at depth

 10^{-7} 10^{-6} 10^{-5} current density (A/m²)

GEOPHYSICS, VOL. 55, NO. 1 (JANUARY 1990);

The electrical field in a borehole with a casing

Alexander A. Kaufman*

(a)

(b)

GEOPHYSICS, VOL. 58, NO. 12 (DECEMBER 1993);

A transmission-line model for electrical logging through casing

Alexander A. Kaufman* and W. Edward Wightman[‡]

Case one, $\alpha L_c \ll 1$

Then, for the current I we have:

$$I(z) \approx I_o \left(1 - \frac{z}{L_c} \right), \tag{45}$$

showing that the current linearly decreases with the distance.

Case two, $\alpha L_c \gg 1$

where $z/L \ll 1$, and

$$\Delta \Delta U = \frac{I_o}{S} \alpha (MN)^2 e^{-\alpha z}, \qquad (54)$$

that is, all functions decay exponentially with the distance from the electrode A.

4

GEOPHYSICS, VOL. 59, NO. 7 (JULY 1994);

Electrical resistivity measurement through metal casing

Clifford J. Schenkel* and H. Frank Morrison[‡]

FIG. 14. Plots of the potentials (a) and percent difference between the background and injection potentials (b) for plume only (circles) and plume/casing (squares) for 25 m (black) and 50 m (white) plumes. The pre-injection potentials are the dashed lines (with casing) and solid lines (without casing).

 $F_{IG.}$ 15. Current patterns in the medium and conductive plume for the mise-à-la-masse, point source in an uncased hole, (a) and energized casing (b) configurations.

more recently... advances in modelling

more recently... a number of applications

monitoring

Pardo et al., (2018), Cuevas & Pezzoli (2022); Swidinsky et al., (2023)...

steel casings & electromagnetics

steel: highly conductive, magnetic

 $\sigma: 5.5 \times 10^6 ~\rm{S/m}$

 $\mu:50\mu_0$ to $150\mu_0$

Wu & Habashy (1994)

high conductivity:

- helps channel currents to depth
- strategies for simulating

magnetic permeability

time domainfrequency domain
$$\nabla \times \vec{e} = -\frac{\partial \vec{b}}{\partial t}$$
 $\nabla \times \vec{E} = -i\omega \vec{B} \frac{\partial \vec{b}}{\partial t}$ $\nabla \times \vec{h} = \vec{j} + \frac{\partial \vec{d}}{\partial t}$ $\nabla \times \vec{H} = \vec{J} + i\omega \vec{L}$ $\vec{j} = \sigma \vec{e}$ $\vec{J} = \sigma \vec{E}$ $\vec{b} = \mu \vec{h}$ $\vec{B} = \mu \vec{H}$ $\vec{d} = \varepsilon \vec{e}$ $\vec{D} = \varepsilon \vec{E}$

setup: grounded source experiment

impacts of permeability on EM data

FDEM: 5Hz

impacts of permeability on EM data

11

impacts of permeability on EM data

impacts of permeability on EM data FDEM: 100m

impacts of permeability on EM data FDEM: 100m

14

impacts of permeability on EM data

magnetic permeability in electromagnetic experiments

In frequency domain

notable impact even at "low" frequencies

In time-domain

• delays the decay

impacts of μ have been studied in other applications...

Noh et al., (2016)

Frequency domain, inductive sources

Use integral formulation to describe role of permeability in terms of

• induction

$$\mathbf{H}_{S}^{I}(\mathbf{r}) = \int_{V} \left[\Delta \sigma(\mathbf{r}') \left\{ \mathbf{E}_{P}(\mathbf{r}') + \mathbf{E}_{S}^{I}(\mathbf{r}') \right\} \cdot \mathbf{G}_{J}^{H}(\mathbf{r}, \mathbf{r}') \right] \mathrm{d}V,$$

• magnetization

$$\mathbf{H}_{S}^{M}(\mathbf{r}) = \int_{V} \left[\frac{\Delta \mu \left(\mathbf{r}' \right)}{\mu_{0}} \left\{ \mathbf{H}_{P}(\mathbf{r}') + \mathbf{H}_{S}^{M}(\mathbf{r}') \right\} \cdot \mathbf{G}_{M}^{H}\left(\mathbf{r}, \mathbf{r}' \right) \right] \mathrm{d}V$$

• and coupling effects

$$\mathbf{H}_{S}^{C}(\mathbf{r}) = \int_{V} \left[\Delta \sigma(\mathbf{r}') \left\{ \mathbf{E}_{S}^{M}(\mathbf{r}') + \mathbf{E}_{S}^{C}(\mathbf{r}') \right\} \cdot \mathbf{G}_{J}^{H}(\mathbf{r}, \mathbf{r}') + \frac{\Delta \mu(\mathbf{r}')}{\mu_{0}} \left\{ \mathbf{H}_{S}^{I}(\mathbf{r}') + \mathbf{H}_{S}^{C}(\mathbf{r}') \right\} \cdot \mathbf{G}_{M}^{H}(\mathbf{r}, \mathbf{r}') \right] \mathrm{d}V.$$

Geophysical Journal International

Geophys. J. Int. (2016) 204, 1550–1564 GJI Marine geosciences and applied geophysics

Analysis of anomalous electrical conductivity and magnetic permeability effects using a frequency domain controlled-source electromagnetic method

Kyubo Noh,¹ Seokmin Oh,¹ Soon Jee Seol,¹ Ki Ha Lee² and Joongmoo Byun¹

¹Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-gu, 133–791, Seoul, Korea, E-mail: ssjdoolly@hanyang.ac.kr

²Exploration Geophysics & Mining Engineering Department, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahang-no, Yuseong-gu, 305–350, Daejeon, Korea

Pavlov & Zhdanov (2001)

Time domain, inductive sources

Rewrite the Maxwell's equations

$$\nabla \times (\nabla \times E) - \underline{\nabla \ln \mu_{\rm r}} \times (\nabla \times E) + \underline{\mu_0 \mu_{\rm r}} \sigma \frac{\partial E}{\partial t} = -\mu_0 \mu_{\rm r} \frac{\partial j^{\rm e}}{\partial t}.$$

(1) contribution due (2) to magnetization inc

(2) contribution to inductive component

Two conclusions. Anomalous permeability...

- prolongs anomalous TDEM response
- increases response as compared to only conductive target

Journal of Applied Geophysics 46 (2001) 217-233

www.elsevier.nl/locate/jappge

Analysis and interpretation of anomalous conductivity and magnetic permeability effects in time domain electromagnetic data Part I: Numerical modeling

Dmitriy A. Pavlov, Michael S. Zhdanov *

magnetic permeability in electromagnetic experiments

In frequency domain

notable impact even at "low" frequencies

In time-domain

• delays the decay

what about for grounded sources? interplay of high conductivity, permeability?

TDEM response: halfspace

TDEM response: conductive casing

TDEM response: conductive casing

the zero-crossing in TDEM, FDEM responses...

due to geometry, currents channelling into casing

depth slices of currents

TDEM response: conductive, permeable casing

$$\sigma = 5.5 \times 10^6 \,\text{S/m}$$

$$\mu = 150\mu_{\rm C}$$

 -	 					
	10-8	10=7	10-6	10-5		
	10 0	10 '	10 0	10 5		
	current density (A/m²)					

current density (A/m²)

TDEM response: conductive, permeable casing

the cartoon explanation

start from Ampere's law	N $\nabla imes \vec{h} - \sigma \vec{e} = \vec{j}_s$	$\nabla \times \frac{1}{\vec{b}} = \vec{z} - \vec{z}$	
use constitutive relation $\vec{b} = \mu \vec{h}$		$\bigvee \times \frac{-o}{\mu} - \sigma e = j_s$	
vector identity $ abla imes (\psi \vec{v}) =$	$\psi \nabla \times \vec{v} + (\nabla \psi) \times \vec{v}$	$\frac{1}{\mu}\nabla\times\vec{b} + \left(\nabla\frac{1}{\mu}\right)\times\vec{b} - \sigma\vec{e} = \vec{j}_s$	
multiply by μ		$\nabla\times\vec{b} + \left(\mu\nabla\frac{1}{\mu}\right)\times\vec{b} - \mu\sigma\vec{e} = \mu\vec{j}_s$	
identity	$\mu \nabla \left(\frac{1}{\mu}\right) = -\nabla \ln \mu_r$	$\nabla \times \vec{b} - \nabla \ln \mu_r \times \vec{b} - \mu \sigma \vec{e} = \mu \vec{j}_s$	
away from the source		$\nabla \times \vec{b} = \nabla \ln \mu_r \times \vec{b} + \mu \sigma \vec{e}$	

$$\nabla \times \vec{b} = \frac{\nabla \ln \mu_r \times \vec{b} + \mu \sigma \vec{e}}{(1)}$$
(2)
magnetization induction
term term

۲

$$abla imes \vec{b} = \frac{\nabla \ln \mu_r \times \vec{b} + \mu \sigma \vec{e}}{\overset{(1)}{\max}}$$
(2)
magnetization induction

term

- role of μ acts in same manner as σ
- enhances inductive component of response

term

$$\nabla \times \vec{b} = \frac{\nabla \ln \mu_r \times \vec{b}}{(1)} + \frac{\mu \sigma \vec{e}}{(2)}$$
magnetization induction term

- non-zero only where μ changes (at the casing walls)
- role...???

by symmetry, magnetic field mostly rotational

b-field discontinuous, negligible on inner casing wall

negative radial x negative azimuthal = positive vertical

$$abla \times \vec{b} = \frac{\nabla \ln \mu_r \times \vec{b}}{(1)} + \frac{\mu \sigma \vec{e}}{(2)}$$
magnetization induction term

- non-zero only where μ changes
 (at the casing walls)
- role: contributes an upwards oriented magnetization current

why do we care?

(it's interesting!)

magnetic permeability...

- enhances inductive component of the response
- introduces a magnetization current

as a result...

- alters EM excitation
- alters EM data

consider a test volume...

why do we care?

summary

magnetic permeability...

- enhances inductive component of the response
- introduces a magnetization current

as a result...

• alters EM excitation & data

implications...

- not equal to a simple scaling of conductivity
- can't be modelled by "equivalent" magnetic dipoles
- questions for modelling in 3D
- additional complication: μ usually not known...

but ... we understand the physics and can simulate responses

thank you! questions?

Heagy, L.J., Oldenburg, D.W., 2023. Impacts of magnetic permeability on electromagnetic data collected in settings with steel-cased wells. Geophysical Journal International 234, 1092–1110. <u>https://doi.org/10.1093/gji/ggad122</u>

$$\nabla \times \vec{b} = \nabla \ln \mu_r \times \vec{b} + \mu \sigma \vec{e}$$

 $\mu\sigma\vec{e}$

 $\nabla imes ec{b}$

FDEM response

FDEM currents (real - dc)

FDEM currents (imag)

FDEM zoomed in (real)

FDEM zoomed in (real)

(b) conductive, permeable casing (imag)

excitation in time

a more conductive background 1 S/m

More conductive background (1 S/m)

More conductive background (1 S/m) x = 26, 100m

More conductive background (1 S/m)

