

AEM Surveys Applied for Iron Formation Mapping: A Proxy for Iron Ore Exploration

Marco Antonio Couto Jr (marco.junior1@vale.com), Dionísio Uendro Carlos, Raphael Fernandes Prieto

Geophysics Team

Geological Data Governance and Technical Services 15/11/2023

3DEM 7th Edition

Nov 13 - 15, 2023 Vancouver, BC

Area of **specialists** that aims to promote **integration** between **geology**, **geophysics**, and **technological innovation** in the value chain of geosciences.

Our Mission:

To develop and implement technological solutions:

- Optimization of geological/geophysical data acquisition processes;
- Improvement of the quality of acquired data, information and its availability;
- Reduction of risks in data acquisition tasks;
- Reduction of uncertainties in different geological processes through increased geological knowledge by integrating geoscience disciplines.

People:

PhD Dionísio Carlos Master Geophysicist

MBA Debora Rossi Master Geologist

PhD Marco Junior Master Geophysicist

MSc Raphael Prieto Master Geophysicist

BSc Hugo Oliveira Intern

VALE

AIRBORNE GEOPHYSICS

Airborne Gravity Gradiometry (AGG)

FTG & FALCON

Regional Magnetics and Radiometrics

AEM (FDEM & TEM)

1 4

AIRBORNE GEOPHYSICS – CARAJÁS (CKS) MINERAL PROVINCE

	AEM System	Line - km	Line Sep. (m)	Year
TEM -	GEOTEM	37587.2	250	1990's
	QUESTEM	16535.4	250	1990's
	VTEM	1197.1	250	2003
	Helitem	9338.2	200	2016, 2022
FDEM -	Aerodat-5	6041.9	250	1990's
	DIGHEM-V	2311.0	250	1990's
	RESOLVE	327.0	50	2021

VALE

AIRBORNE GEOPHYSICS – QUADRILÁTERO FERRÍFERO (QF) MINERAL PROVIN

AGG (Falcon & FTG) and Magnetics

AEM (FDEM)AEM
SystemLine - kmLine Sep.
(m)YearRESOLVE18658..025 or 1002020-2021

RESOLVE BIRD AND COILS

From http://em.geosci.xyz

S11D STUDY CASE

CARAJÁS REGIONAL GEOLOGY

S11D LOCAL GEOLOGY

Supergene iron ore

S11D STUDY CASE – RESOLVE SURVEY

250 500 1000 400011000 24000

Diff. Rho (Ohm.m)

S11D STUDY CASE – RESOLVE SURVEY

S11D STUDY CASE – RESOLVE SURVEY

- Good spatial correlation between RESOLVE resistive domains and the banded iron formation. However, it could not distinguish between friable hematite (magenta) and compact jaspilite (blue);
- It maps the contact between mafic (conductive domain) and iron formation (resistive domain);
- New targets indication beyond the known geological model;
- Contact between C and D bodies?

S11D STUDY CASE – AEM, AGG & AMAG

GEOTEM and RESOLVE

- The whole S11 iron formation is marked by a strong resistor by the apparent conductance data from the GEOTEM survey.
- RESOLVE high resistive anomaly in good agreement with the resistive domain in S11D.
- S16 and S17 targets are correlated with high resistive regions as well.

S11D STUDY CASE – AEM, AGG & AMAG

FullTensorGravityGradiometry (FTG)

- The standard approach in terms of iron ore exploration.
- Iron formations are well marked by high density anomalies.
- Strong spatial correlation between higher values of Tzz and resistive zones.

S11D STUDY CASE – AEM, AGG & AMAG

Airborne Magnetivcs (AMAG)

- Important ancillary for the AGG data.
- Good spatial correlation with known iron bodies.
- It is also well spatially correlated with AEM and AGG data.

CARAJÁS PROVINCE – AEM, AGG & AMAG (SOUTHERN AREA)

Regional Anomalies

- The pattern about resistive anomalies related to known iron formation stands in a regional sense.
- This also holds for AGG and AMAG anomalies.

CARAJÁS PROVINCE – AEM, AGG & AMAG (SOUTHERN AREA)

Regional Anomalies

- The pattern about resistive anomalies related to known iron formation stands in a regional sense.
- This also holds for AGG and AMAG anomalies.

CARAJÁS PROVINCE – AEM, AGG & AMAG (SOUTHERN AREA)

Regional Anomalies

- The pattern about resistive anomalies related to known iron formation stands in a regional sense.
- This also holds for AGG and AMAG anomalies.

S11D STUDY CASE

WHAT DOES THE PETROPHYSICS TELL US?

- **Database:** Multitools Borehole Geophysics
- 18 boreholes 6899.44 m sampling interval
- Measurements:
 - Gamma-gamma density (DNBO);
 - Laterolog (FE2);

S11D STUDY CASE

WHAT DOES THE PETROPHYSICS TELL US?

Legend

- CE Structural canga
- CQ Chemical canga
- HF Friable hematite
- HC Compact hematite
- HMN Manganese-hematite

- JP Jaspilite
- MD Weathered mafic rock
- MSD Partially weathered mafic rock
- MS Preserved mafic rock
- BR Breccia

SO... HIGH RESISTIVE ANOMALIES MATTER!

S11D STUDY CASE

OK... BUT WHAT IS THE BEST WAY TO DEAL WITH AEM DATA THEN?

Standard Approach: Conductors Picking & Parametric Modeling (Palmeirópolis Case)

Parametric Modeling

VALE

S11D STUDY CASE

OK... BUT WHAT IS THE BEST WAY TO DEAL WITH AEM DATA THEN?

- Yep... It works quite good for conductos. But we are dealing with very resistive environment.
- We need to address the resistivity model properly.
- 1D inversions? LCI or SCI?
- 3D inversions???
- What about IP effect?
- Lots of magnetite... Is superparamagnetic effect relevant?

S16 TARGET STUDY CASE – HELITEM SURVEY

OK... BUT WHAT IS THE BEST WAY TO DEAL WITH AEM DATA THEN?

OK... BUT WHAT IS THE BEST WAY TO DEAL WITH AEM DATA THEN?

Accelerated Development for Geoscience Analyst. It covered:

- AEM Data Processing.
- Joint Inversions AGG, AEM and AMAG (Cross-Gradient)
- Case Study: S16 Target

Vale-RnD repo

Documentation

# geoh5py stable	★ / ULJSON Format	itHul
	UI.JSON Format	
	About	
at	The ui.json format provides a schema to create a simple User Interface (UI) between geoh5py a Geoscience ANALYST Pro. The format uses JSON objects to represent script parameters used i	and in
at	the UI, and pass those parameters to an accompanying python script.	
eoscience ANALYST	Each ui, json object requires at least a label and value member, however additional members ca used to define different types of input and additional dependencies between parameters.	in be
ailable for all ui.json		
imeters	For example, a simple ui.json below describes a single parameter called 'grid_object', which is us to select a block model within a geoh5 file.	sed
g Uls		
	("grid object": (
	"meshType": ["{B020A277-90E2-4CD7-84D6-612EE3F25051}"],	
	"label": "Select Block Model", "value": ""	
ost.Your))	

UI.JSON format to run all in GA

Search do

Tutoria geoh5p

GEOHS

E UI.JSON Abou

Usage

Pro Parame objects

B Additio

Tips on Externa Release

23

VALE

Ideas based on:

CSIRO PUBLISHING

www.publish.csiro.au/journals/eg

Exploration Geophysics, 2009, 40, 184–192

An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system

Esben Auken^{1,5} Anders Vest Christiansen² Joakim H. Westergaard³ Casper Kirkegaard¹ Nikolaj Foged¹ Andrea Viezzoli⁴

¹The Hydrogeophysics Group, Department of Earth Sciences, University of Aarhus, Hoegh-Culdbergs Gade 2, DK-8000 Anthus C, Denmark. ²Geological Survey of Denmark and Greenland – CEUS, Department of Groundwater Mapping, Lyseng Alle 1, DK-8270, Hoipierg, Denmark. ³Okticon AS, Department of Water Resources and Applied Geophysics, Jens Juuls Vej 16, DK-8260, Viby J, Denmark. ⁴Aarhus Geophysics, Hoegh-Culdbergs Gade 2, DK-8000 Aarhus C, Denmark. ⁸Corresponding author. Email: esben auken@geoa.ud.k

INVESTIGATIONS IN GEOPHYSICS NO. 3

ELECTROMAGNETIC METHODS IN APPLIED GEOPHYSICS

VOLUME 2, APPLICATION, PARTS A, AND B

EDITED BY MISAC N. MARICHIAN

... and other papers...

Airborne EM Processing

This chapter covers the various tools developed for the processing of airborne electromagnetic data.

Table of content

- Position corrections
 - Laser altimeter
 - <u>Lag</u>
 - Tilt
- Data Filters
- Amplitude
- Convolution
- <u>Time Decay Slope</u>
- Despiking
- <u>Decay Constant</u>
- <u>Apparent Resistivity</u>

💭 jupyter	Quit	Logout
Files Running Clusters		
Select items to perform actions on them.	Upload	New - C
🔲 0 👻 🖿 / airborne_em	Name 🕹 🛛 Last Modified	File size
C	há poucos segundos	
🗋 🗅 images	há 10 dias	
altitude_correction.ipynb	Running há 4 dias	21.7 kB
altitude_correction.py	há 10 dias	14.3 kB
apparent_resistivity.ipynb	Running há 10 dias	19.1 kB
apparent_resistivity.py	há 10 dias	13.5 kB
convolution_filters.ipynb	Running há 5 horas	777 kB
convolution_filters.py	há 10 dias	15.4 kB
🗌 🖉 decay_constant.ipynb	Running há 10 dias	18.5 kB
decay_constant.py	há 10 dias	11.9 kB
🗌 뢷 decay_slope_filter.ipynb	Running há 10 dias	29.9 kB
🔲 ┛ decay_slope_filter.py	há 10 dias	21.8 kB
🗌 ┛ despiking.ipynb	Running há 10 dias	24 kB
🗌 📕 despiking.py	há 10 dias	17.4 kB
🔲 릗 index.ipynb	Running há 10 dias	4.14 kB
🗆 ┛ index.py	há 10 dias	3.1 kB
Iag_correction.ipynb	há 10 dias	13.6 kB
Iag_correction.py	há 10 dias	9.23 kB
🗌 릗 threshold_filter.ipynb	Running há 10 dias	15 kB
threshold_filter.py	há 10 dias	10.6 kB
tilt_correction.ipynb	Running há 3 dias	17.4 kB
<i>I</i> tilt_correction.py	há 10 dias	9.71 kB

Jupyter Notebooks Docs

24

PARTNERSHIP WITH MIRA GEOSCIENCE – AEM PROCESSING

Then, you can setup/test parameters and run for the whole survey interval.

PARTNERSHIP WITH MIRA GEOSCIENCE – AEM PROCESSING

We are using SimPEG to run these joint invertion for AGG, AEM and AMAG

So far, we are using the cross-gradient technique (Gallardo & Meju, 2003):

$$\phi_c(\boldsymbol{m}_A, \boldsymbol{m}_B) = \sum_{i=1}^M \| \nabla \boldsymbol{m}_{A\,i} \times \nabla \boldsymbol{m}_{B\,i} \|^2$$
 (Cross-gradient objective function

 $\phi_{Total}(\boldsymbol{m}_A, \boldsymbol{m}_B, \boldsymbol{m}_C) = \alpha_{AB}\phi_c(\boldsymbol{m}_A, \boldsymbol{m}_B) + \alpha_{AC}\phi_c(\boldsymbol{m}_A, \boldsymbol{m}_C) + \alpha_{BC}\phi_c(\boldsymbol{m}_B, \boldsymbol{m}_C)$ (Total objective function)

• S16 target case study

- FTG: joint inv. decreased high frequency noisy solutions.
- Helitem: joint inv. delimited
 better resistivity contrasts
 between iron formation (host
 rock) and bedrock (mafic unit).

• S16 target case study

29

FINAL REMARKS

TAKE AWAYS AND NEXT STEPS

- AEM data are usefull for mapping/modeling high grade supergene iron formation;
- Recovering good resistivity models are crucial for its application. We need to address all distortions related to the data (noisy data, EM couplings, IP, superparamagnetic?) – MIRA's accelerated development comes handy for this;
- FDEM data might allow to recover the magnetic susceptibility distribution within the iron bodies (we are investigating);
- Integrating AEM data with potential field methods (AGG and MAG) are quite relevant for iron ore exploration:
 - Joint inversion approaches;
 - Predictive models based on all these methodologies (MPM`s);

- VALE S.A. for the permission of this publication.
- Seequent for the AGS Workbench trial license to run the Helitem inversions.
- MIRA Geoscience for the collaboration in the accelerated development project (Dominique Fournier).

- Auken, E.; Christiansen A. V. 2004. Layered and laterally constrained 2D inversion of resistivity data. Geophysics, 69: 752-761. https://doi.org/10.1190/1.1759461.
- Auken, E. Christiansen, A. V.; Westergaard, J. H.; Kirkegaard, C.; Foged, N.; Viezzoli, A. 2009. An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system, Exploration Geophysics, 40:2, 184-192. <u>https://doi.org/10.1071/EG08128</u>.
- Couto, M. A.; Wosniak, R; Marques, E. D.; Duque, T. R. F., Carvalho, M. N. 2017, VTEM and Aeromagnetic Data Modeling Applied to Cu, Zn and Pb Prospection in Palmeirópolis Project, TO, Brazil, SEG Global Meeting Abstracts : 529-534. <u>https://library.seg.org/doi/10.1190/sbgf2017-104</u>
- Gallardo, L. A.; Meju, M. A. 2003. Characterization of heterogeneousnear-surface materials by joint 2D inversion of dc resistivity and seismic data, Geophys. Res. Lett., 30(13), 1658. <u>https://library.seg.org/doi/10.1029/2003GL01737</u>.
- Nabighian, M. N.; Macnae, J. C. 1991. 6. Time Domain Electromagnetic Prospecting Methods. In: Electromagnetic Methods in Applied Geophysics, 427-520. Society of Exploration Geophysics. <u>https://library.seg.org/doi/10.1190/1.9781560802686.ch6</u>.
- Silva, A. C. S.; Costa, M. L. 2020. Genesis of the "soft" iron ore at S11D Deposit, in Carajás, Amazon Region, Brazil. Brazilian Journal of Geology, 50(1): e20180128. https://doi.org/10.1590/2317-4889202020180128.
- Viezzoli, A.; Christiansen, A. V.; Auken, E.; Sørensen, K. 2008. Quasi-3D modeling of airborne TEM data by spatially constrained inversion Geophysics, 73(3), F105-F113. <u>https://doi.org/10.1190/1.2895521</u>

