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SUMMARY 

The recent surge in artificial intelligence has garnered substantial attention among researchers, particularly in the context 
of incorporating machine learning algorithms into inversion procedures. In the realm of Computer Vision (CV), the 
Convolutional Neural Network (CNN) architecture has been identified as inherently enforcing prior knowledge, proving 
advantageous for addressing diverse CV inverse problems, including de-noising and inpainting. This intrinsic 
regularization effect has shown promise in enhancing models recovered through full waveform inversion of seismic, and 
it has the potential for application in other geophysical inverse problems. In this study, we examine the applicability to 
the inversion of DC resistivity data. The CNN maps an arbitrary vector to the model space (e.g., log-conductivity on the 
simulation mesh). The predicted subsurface model is fed into the SimPEG numerical simulation package to generate 
corresponding predicted measurements. Subsequently, the data misfit is computed by comparing these predicted 
measurements with the observed field measurements. This is combined with an L1 smallness term to form the objective 
function. The backpropagation algorithm is employed to update the trainable parameters of the CNN until convergence. 
Note that the CNN does not require training prior to the inversion, rather, the CNN weights are estimated in the inversion 
algorithm. Our preliminary work shows that we can recover models that are comparable to, and even superior to that 
obtained using a standard inversion. For example, we have found that relying on the implicit regularization of the CNN 
improves the recovery of the dip of a target when a standard L1 regularization is employed. This method is training-data-
free, so it can be adapted to other EM inversion problems. 
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INTRODUCTION 
 
The recent emergence of artificial intelligence has 
garnered significant attention from researchers, 
particularly regarding the integration of machine learning 
algorithms into the inversion algorithm. Researchers in 
Computer Vision (CV) have discovered that the Neural 
Network architecture inherently enforces a prior 
knowledge that is advantageous for addressing diverse 
CV inverse problems, including de-noising and inpainting 
(Hattori et al., 2021; Ulyanov et al., 2018). These works 
show that solving inverse problems in a self-supervised 
manner is feasible and sometimes has better performance 
than learning the prior in a supervised manner, which 
require a large training set, because of the inherent 
regularization effect in Convolutional Neural Networks 
(CNN) or Graph Neural Networks (GNN). 
 
In this abstract, we focus on the Direct Current (DC) 
resistivity survey, which is used for a range of 
applications including mineral exploration, groundwater 
studies, and a variety of environmental and geotechnical 
applications. The goal of the inverse problem is to find a 

conductivity model of the subsurface that is consistent 
with the observed data and other prior information or 
assumptions. There are several avenues through which 
prior information and assumptions are included in the 
inversion: the choice reference model, norms on the 
components of the regularization, and the model 
parameterization (e.g., using log-conductivity or a 
parametric model). In this abstract, we explore the use of 
a CNN to parameterize the model. Our experiments thus 
far show that we can recover models that are comparable 
to a standard inversion, and that there may be some 
advantages in using the CNN. Using an example of a 
dipping structure, we find that relying on the implicit 
regularization of the CNN improves the recovery of the 
dip of a target as compared to standard approaches.  
 
 

METHODS 
 
In the DC resistivity survey, transmitters on the ground 
inject a steady state electrical current into the ground and 
the receivers on the ground observe the resulting 
distribution of potentials (voltages) on the surface (Fig. 1). 



Xu & Heagy, 2023, CNN Reparameterization in Inversion 
 

 
   2/4 
 

The conventional way of solving this inverse problem is 
by iteratively updating the conductivity values for each 
cell in the mesh which discretized the subsurface. At each 
iteration, we input the current conductivity model into a 
numerical simulation package (a PDE solver based on 
Maxwell’s equations), whose output would be the 
predicted measurements. We define the objective 
function to be the summation of the data misfit term 𝜙! 
(i.e., the difference between predicted and field 
measurements) and the regularization term 𝜙": 
 

min
#
𝜙!(𝑚) + 𝛽𝜙"(𝑚), 

 
where m represents the conductivity model (see for 
example Oldenburg & Li, 2005). In our proposed method, 
the model, m, is parametrized by a convolutional neural 
network 𝐹$, where z is the fixed input of the convolutional 
neural network (i.e., m = Fz(w)), where w is the vector of 
weights in the CNN. Another update we make is how we 
“cool” the influence of the regularization. Rather than 
only reducing the trade-off parameter multiplying the 
regularization, we simultaneously decrease the trade-off 
parameter multiplying the regularization and increase the 
contribution of the data misfit by the same amount. We 
have found that when using first-order optimization 
methods employed in deep learning that this leads to 
better convergence. Thus, the objective function in our 
proposed method is: 
 

min	
%

	(1 − 𝛽)𝜙!/𝐹$(𝑤)1 + 𝛽|𝐹$(𝑤) −𝑚&'(|). 

Since the inverse problems in geophysics are typically ill- 
posed, the regularization plays a very important role in 
inversion.  

 
 
 
Figure 1: Transmitter and receiver in a DC resistivity 

survey (Cockett et al., 2016).  
 
To demonstrate, we consider a model that consists of 2 
layers with a dike in the second layer, as shown in Figure 2. 
We consider 3 different dip angles (first, second, and third 
rows) to test the robustness of the proposed model. We 

simulate a dipole-dipole survey with 348 data points. We 
perform several inversions with the conventional methods 
to serve as the benchmark. The second column used an 
approximate L0 norm on the smallness and an L1 norm on 
the smoothness; these inversions were performed without 
sensitivity weighting. The third column used an L0 norm 
on the smallness and an L1 norm on the smoothness, and 
these inversions were performed with sensitivity 
weightings. Our results using a CNN to parameterize the 
model are shown in the fourth column. Note that only a 
smallness term is used in the regularization, and an L1 
norm is applied.  
 
All models recover a conductive structure in approximately 
the correct location, but we see the influence of the first-
order smoothness in the standard inversion results, which 
tends to align structures with the axes along which we are 
regularizing (horizontal and vertical). The use of the CNN 
and only the smallness term is better able to recover the dip 
of the target. Although no explicit smoothness term is used 
in the regularization, we hypothesize that the CNN 
provides implicit regularization that promotes recovery of 
a reasonable target.  
 

DISCUSSION 

In this study, we examine the applicability of the inherent 
regularization effect from the CNN structure to the 
inversion of DC resistivity data by utilizing trainable 
weights within the CNN to parameterize the conductivity 
model. Namely, the CNN maps an arbitrary vector to the 
mesh space. The predicted subsurface model is then fed 
into the numerical simulation package to generate 
corresponding predicted measurements. Subsequently, 
the objective function value is computed. Compared to the 
objective function in the conventional methods, the 
objective function in the proposed methods doesn’t have 
the smoothness term and doesn’t use sensitivity weighting. 
The backpropagation algorithm is employed to update the 
trainable parameters of the CNN until convergence. Note 
that the CNN does not require training prior to the 
inversion, rather, the CNN weights are estimated in the 
inversion algorithm. Our preliminary work shows that we 
can recover models that are comparable to, and even 
superior to that obtained using a standard inversion. For 
example, we have found that relying on the implicit 
regularization of the CNN improves the recovery of the 
dip of a target when a standard L1-smallness 
regularization is employed (Figure 2). In general, the 
proposed method can also eliminate the problem that 
structures are concentrated near the electrodes in the 
recovered model. This method is training-data-free, so it 
can be adapted to other EM inversion problems.  
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CONCLUSION 

There are many choices of CNN architecture that can be 
employed and it’s likely that the best choice of network 
will depend on the nature of the expected model, we 
conduct inversions for the above examples (3 examples in 
Figures 2) with the same CNN architecture to illustrate 
the robustness of the method. The next step of this project 
would be further exploring this implicit regularization 
effect by looking at the inversion results using different 
depths of the CNN architecture, different modes for the 
up-sampling layers, and different kernel sizes and stride 
values for the convolutional layers. 
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Figure 2: The comparation between the conventional methods (middle two columns) and proposed 
method (the right most column) in three dike models with the different dip angles. The subplots on 
the second/third column are from the standard sparse-norms inversions without/with sensitivity 
weights respectively. The p and q values shown indicate the choice of norm used for the smallness 
and smoothness terms respectively. 
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