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Summary

We introduce an efficient and robust iterative framework based on the Block-Based PREconditioner for Square
Blocks known as PRESB for 3D controlled-source electromagnetic problems in frequency domain. We study
the robustness, efficiency and scalability of the iterative solver and compare it to other solution methods.
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Introduction

Electromagnetic (EM) surveys may comprise numer-
ous receivers and multiple sources in complex three-
dimensional (3D) settings with topography and sub-
surface structures. Accurate numerical forward or in-
verse modelling of such large-scale studies account-
ing for their respective survey setup as well as reliefs
requires large 3D meshes which may yield computa-
tional models of large proportion ranging from a cou-
ple to hundreds of millions degrees of freedom. Solv-
ing problems of these sizes is computationally chal-
lenging and expensive and consequently strategies
reducing the computational burden are paramount.
A key component of both the forward and inverse
problem is the solution of the algebraic system of
equations stemming from Maxwell’s equations, that
is solving a discrete system of the form Ux = b where
matrix U is sparse and non-singular and where x and
b denote the solution and source vectors, respectively.

In general, two types of numerical solution meth-
ods are employed to obtain solutions of linear sys-
tems of equations, namely direct and iterative ap-
proaches with their respective advantages and disad-
vantages. Direct methods find broad application due
to their generality, robustness and ease of use and de-
spite their high memory requirements (proportional
to O(N2) in 3D with N denoting the number of de-
grees of freedom) for large problems. Iterative solu-
tion techniques on the other hand are considered very
resource friendly, but may be afflicted by slow conver-
gence or even divergence if applied without adequate
and problem-specific preconditioning techniques as

preconditioning greatly improves the robustness and
efficiency of iterative methods.

The objective of this work is to present a devel-
oped and efficient iterative solution framework for
controlled-source EM problems. The framework is
shown to be robust to discretisation and material pa-
rameters. In addition, the framework is compared
against other iterative and direct solution methods.
Lastly, the scalability of the framework is investigated
and studied.

Method

The algebraic linear system of equations govern-
ing the physics encountered in frequency-domain
controlled-source EM problems based on a total field
formulation is given by

(K+ iMσ −Mε) e = b, (1)

where matrix K denotes the sparse symmetric posi-
tive semi-definite stiffness matrix, matrices Mσ and
Mε are the sparse symmetric positive definite mass
matrices. The vectors e and b denote the solution
vector and the right hand side vector.
This sparse symmetric complex-valued system can be
cast into an equivalent real-valued two-by-two block
system that reads as follows[

Mσ −(K−Mε)
K−Mε Mσ

]
︸ ︷︷ ︸

CRI

[
eR
−eI

]
=

[
bI

bR

]
, (2)

and belongs to systems of the more general type of
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form

A =

[
A −b B2

aB1 A

]
. (3)

For systems of this type and if matrix A is symmet-
ric positive definite and the non-zero scalars a and b
are of the same sign, there exists an efficient precon-
ditioner known as PRESB short for ’PREconditioner
for Square Blocks’ (see e.g. Axelsson et al., 2014) that
is of form

PPRESB =

[
A −bB2

aB1 A+
√
ab(B1 +B2)

]
(4)

and for which it can be shown that all the eigen-
values of the preconditioned system P−1

PRESBA lie in
the interval 0.5 and 1 (see e.g. Axelsson et al., 2016).
The clustering of the eigenvalues translates to excel-
lent convergence properties of the preconditioner. In
addition, the preconditioner is robust with respect
to mesh discretisation and material parameters. The
preconditioner possesses the following block factori-
sation[
A −BT

B A+B+BT

]
=

[
I −I
0 I

] [
A+B 0

0 I

] [
I 0
B I

]
[
I 0
0 A+BT

] [
I I
0 I

]
.

(5)

Applied to the two-by-two system (2), the compu-
tational cost of applying the PRESB preconditioner
amounts to solving to linear systems with Mσ +
(K−Mε) and Mσ + (K−Mε)

T , one multiplication
with the matrix Mσ and three vector additions. This
is equivalent to solving a system of the form[

Mσ −(K−Mε)
K−Mε Mσ + 2(K−Mε)

]
︸ ︷︷ ︸

PPRESB

[
w1

w2

]
=

[
f1
f2

]
, (6)

which is summarised in Algorithm 1 as

Algorithm 1: Solving linear system with
preconditioner PPRESB

1 Solve (Mσ +K−Mε)g = f1 + f2
2 Compute Mσg and f1 −Mσg
3 Solve (Mσ +K−Mε)h = f1 −Mσg
4 Compute w1 = g + h and w2 = −h

The linear systems in the above procedure constitute
discretised H0(curl,Ω) problems which can be solved
fast and efficiently using the auxiliary-space technique
(see e.g. Xu, 1996; Hiptmair & Xu, 2007; Kolev &
Vassilevski, 2009). Here, the auxiliary-space Maxwell
solver (AMS) implemented in hypre (Falgout & Yang,

2002) is used to precondition a generalised conjugate
residual method (GCR; Eisenstat et al., 1983) to ob-
tain solution to systems involving (Mσ +K−Mε).
Alternatively, the systems at hand can be solved us-
ing a direct solver such as MUMPS (Amestoy et al.,
2000) for example.

The two-by-two system given in equation (2) is
solved using a GCR method and preconditioned with
PRESB and the iterative solver is described in Al-
gorithm 2. The algorithm thus consists of an outer
solver with a nested inner solver. Each outer iteration
requires applying the preconditioner PRESB thus ne-
cessitating two inner solves as outlined in Algorithm
1.

Algorithm 2: PRESB-preconditioned GCR
method
Input: CRI,bR,I,Mσ +K−Mε,Mσ, initial

guess x0, tol
Output: eR,I

1 Set r0 = b−CRIx0

2 for i = 0, . . .m do
3 Solve PPRESBpi = ri using Algorithm 1
4 qi = CRIpi

5 qi = qi −
∑i−1

j=0 qj
(qi,qj)
(qj ,qj)

6 pi = pi −
∑i−1

j=0 pj
(qi,qj)
(qj ,qj)

7 αi =
(ri,qi)
(qi,qi)

8 xi+1 = xi + αipi

9 ri+1 = ri − αiqi

10 if ||ri+1||2
||r0||2 < tol then eR,I = xi+1 &

Stop
11 end

The iterative framework described has been imple-
mented using distributed-memory parallelism and
makes use of functionalities provided by the open-
source libraries PETSc (Balay et al., 2022), hypre
(Falgout et al., 2006) and MUMPS (Amestoy et al.,
2000) as a standalone Fortran code (see Weiss et al.,
2023). More recently, the iterative framework has
been added to custEM (Rochlitz et al., 2019) and
will be made available with the next version update.

Results

Robustness

The results presented in the following subsection sum-
marise the findings in Weiss et al. (2023). For the
reader’s convenience, the essential information and
observations are repeated here.

The robustness of the iterative framework is tested
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using two problems as depicted in Figure 1. Table 1
indicates relevant information about the model and
source for Problems 1 and 2.
All simulations presented are run using two MPI pro-
cesses on a AMD Ryzen Thread-ripper 2950X 16-
core processor with a clock frequency of 3.5 GHz and
with 128 GB RAM. Moreover, each computation is
stopped when the relative residuals of the outer and
inner solver dips below 10−12 and 10−3, respectively.

The iterative framework is tested for Problem 1 with
respect to variable frequencies as well as problem size
at the same time. Table 2 displays the outer iteration
counts and simulation times for three problem sizes
and for four frequencies spanning almost five orders
of magnitude. It can readily been observed that the
outer iteration count is very stable across the tested
range of frequencies. In addition, the outer iteration
count is independent of the problem size.

Problem 2 is used to asses the robustness of the it-
erative solver with respect to magnetic permeability
and dielectric permittivity. Results of simulations for
the chosen material properties (see Table 1) are given
in Table 3 and verify that the iterative framework is
robust with regard to variable material properties as
indicated by the outer iteration counts.

Comparison and Scalability

The iterative solver is compared to other solution
methods and tested with regard to scalability using
the crooked loop example on a three-layer Earth from
the custEM toolbox (Rochlitz et al., 2019). All simu-
lations are run using polynomial of first order on the
example’s finest mesh yielding 13′447′978 degrees of
freedom for the two-by-two system. The iterative pro-
cedure is terminated when the relative residual of the
outer algorithm falls below 10−8. All computations
times are obtain on a Dell PowerEdge R940 server
with four Intel Xeon Gold 6154 processors clocked at
3 GHz and 48 LRDIMM 64 GB, DDR4-2666, Quad
Ranks.

The preconditioner PRESB is compared to a highly
efficient block diagonal preconditioner (see e.g. Chen
et al., 2010; Grayver & Bürg, 2014). The numerical
experiments for this comparison are run using 56 MPI
processes. Figure 2 shows the convergence histories
for simulations using the PRESB and block diagonal
preconditioner, respectively, across four frequencies.
In addition, the corresponding simulation times are
annotated in the plots. It is evident that PRESB re-
quires fewer iterations to reach the desired relative
residual and thus saves some time compared to the
block diagonal preconditioner.

The scalability, time and memory requirements for
the direct solver MUMPS and the iterative frame-
work are compared in Figure 3. The plot on the left
displays the run times against the number of parallel
processes used and indicates that the iterative frame-
work reduces the simulation times by a factor of 2.9 to
3.8. On the right, the memory usage is tracked over
the run time for both the direct solver (blue) and it-
erative algorithm (red). Peak memory consumption
is annotated in the plot. Overall, the iterative frame-
work requires approximately one order of magnitude
less memory for this example with a system size of
13′447′978 than the direct solver MUMPS.

All in all, the developed iterative framework proves
highly efficient in terms of computational time and
memory requirements in comparison to the direct
solver MUMPS. Further, as indicated by the conver-
gence histories and the simulations times in Figure 2,
PRESB is slightly more efficient than the block diag-
onal preconditioner. As the implementation of both
preconditioners is based on similar building blocks,
changing to the preconditioner PRESB is straight for-
ward and simple and thus suggested.

Figure 3 further reveals the considerable potential of
the algorithm in terms of computational resources
which may be harnessed in inverse modelling by incor-
porating the iterative solver as an underlying engine
for it.

Conclusion

The numerical experiments attest to the robustness
of the PRESB-preconditioned GCR method with re-
gard to frequency, problem size, mesh discretisation
and spatially variable material properties, that is elec-
tric conductivity, magnetic permeability and dielec-
tric permittivity. Comparisons with other solvers
and the scalability example demonstrate the poten-
tial of the iterative solver in terms of computational
resources and as a possible future engine for inver-
sions.
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Figure 1: Schematic profile of Problems 1 and 2 (see Weiss et al., 2023).

Table 1: Model information for Problems 1 and 2

Model Problem 1 - Layered Earth Problem 2 - 3D model

Domain size [km3] 30× 30× 30 30× 36× 30

Coordinates of 3D body - (−4000, 2000,±331), (−3000, 2000,±331)
(−3000, 5000,±331), (−2000, 5000,±331)

Source type Grounded cable extending from
(−100, 0, 0) m to (100, 0, 0) m

Grounded cable extending from
(−75, 0, 0) m to (59, 0, 0) m

Source moment [Am] 100 100

Conductivities [S/m] σair = 10−8, σEarth = 10−4,
σlayer = 10−2

σair = 10−8, σEarth = 10−4,
σcover = 0.01, σore = 1

Relative permeabilities µair = 1, µEarth = 1,
µlayer = 1

µair = 1, µEarth = 1,
µcover = 1, µore = 1 or 10

Relative permittivities εair = 1, εEarth = 1,
εlayer = 1

εair = 1, εEarth = 5,
εcover = 20, εore = 1

Approximation order 1st 1st
# elements 54× 54× 54 332’580
# degrees of freedom 980’100 2’033’986

Table 2: Problem 1: Robustness with respect to problem size and across frequency for the iterative solver
shown by the outer iteration counts (Nouter

it ) and solving times (time [s]) (see Weiss et al., 2023).

frequency [Hz]

0.1 10 1000 8000

Problem size Nouter
it time [s] Nouter

it time [s] Nouter
it time [s] Nouter

it time [s]

980’100 7 42.2 16 79.3 19 70.2 18 96.8
3’641’400 8 152.9 15 286.4 18 272.6 19 310.2
6’879’600 8 343.4 16 646.5 18 521.8 18 790.5
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Table 3: Problem 2: Robustness with regard to spatially variable dielectric permittivity and for two different
magnetic permeabilities for the ore body across frequencies for the iterative algorithm shown by the outer
iteration counts (Nouter

it ) and solution times (time [s]) (see Weiss et al., 2023).

relative dielectric permittivity
of air, cover, host rock and ore body

εair
r = 1, εcover

r = 20,
εEarth
r = 5, εore body

r = 1

relative magnetic permeability
of ore body µr = 1 µr = 10

frequency [Hz] Nouter
it time [s] Nouter

it time [s]

0.1 9 590.4 11 691.6

10 16 282.3 16 279.8

100 23 278.5 24 285.1

8000 18 341.0 18 322.4
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Figure 2: Comparison of the convergence histories for the crooked loop example run across four frequencies
between PRESB and the block diagonal preconditioner. The subplots indicate the overall simulation time.
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Figure 3: Scalabilities and computational requirements (time and memory) for the iterative framework denoted
as PRESB-AMS and the direct solver MUMPS for the crooked loop example.
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