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Summary

Electromagnetic induction (EMI) methods are commonly used to classify unexploded ordnance (UXO) in both
terrestrial and marine settings. Modern time-domain systems used for classi�cation are multicomponent which
means they acquire many transmitter-receiver pairs at multiple time-channels. We developed a convolutional
neural network (CNN) that classi�es UXO directly from EMI data. Analogous to an image segmentation
problem, our CNN preserves the spatial dimensions of the input and produces a high-resolution classi�cation
map. The CNN is trained using synthetic data generated with a dipole forward model considering all possible
UXO and clutter objects. A physics-based parameterization of the clutter classes is used to maximize clutter
discrimination. Our approach was tested on data acquired with the UltraTEMA-4 system in the Sequim
Bay marine test site. Including spatially correlated noise in our training dataset signi�cantly improved our
classi�cation results for �eld data. For this test dataset, our CNN-based approach detects all UXOs and
discriminates ∼70% of the clutter.
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Introduction

The use of EMI systems to detect and classify UXO
on land is well established. Recently, systems such
as the UltraTEMA-4 (Funk et al., 2022) have also
been designed for underwater munitions. Advanced
systems aim to reduce costs related to excavation and
interrogation by discriminating non-UXO objects in
a single pass. These systems usually rely on many
sources and receivers and create spatially dense data
which has high information content since the targets
are illuminated from di�erent angles.

The usual work�ow for clearing a site consists of gen-
erating a map from EMI data from which anomalies
of interest are picked, then classi�cation is done for
each of these anomalies and a target list is obtained.
Picking anomalies from a gridded image created from
sensor data is done by setting some threshold value of
amplitude chosen to maximize the detection of ord-
nance expected at the site without including anoma-
lies from sensor noise or smaller items. Once the
anomalies are picked, classi�cation is done using a
physics-based inversion approach where polarizabil-
ity curves are estimated from the EMI data. These
curves are then compared with those in a library to
look for a match based on some mis�t and a class is
assigned (see e.g. Pasion et al., 2007).

In this work, we develop a work�ow that takes EMI
data directly and produces a classi�cation map using
two CNNs from which a �nal single class may be as-
signed to each anomaly detected. Both CNNs have
the same architecture but the �rst one is only used
to detect anomalies from metallic objects while the
second creates the classi�cation map.

Methods

We use two CNNs to detect and classify UXOs from
EMI data. The input for the CNNs was de�ned as a
two-dimensional data map considering a �xed num-
ber of transmitter cycles in the along-track direction
and the spatial extent of the receivers in the cross-
track direction. Analogous to an image segmentation
problem, our CNN outputs a classi�cation map that
preserves the spatial dimensions of the input (Fig-
ure 2). The label masks used for training are de�ned
using the magnitude of dB/dt (computed from x,y,z
components measured at receivers), adding them up
for all the transmitters and thresholding this sum at
a speci�c value (Figure 3). Data is processed per-line
using a �xed sliding window with steps equal to one
and a simple voting scheme is used to get a single
class value per receiver location.
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We train the CNNs using synthetic data generated
with a dipole forward model considering all possible
UXO and clutter objects. This forward model uses
polarizability curves from a library; each object in
the library has three polarizability curves associated
with three orthogonal axes aligned with its geometry.
This dipole model has been shown to be accurate for
compact objects such as UXOs. The clutter objects
were designed based on the following physics-based
parameterization for the polarizability curves (Pasion
& Oldenburg, 2001):

L(t) = kt−β exp (−t/γ) (1)

Where L(t) denotes the polarizability as a function
of time t and k, β and γ are parameters related to
the decay of the EM signal in the object. Using this
model, we estimate the values of k, β and γ for the
UXOs in the library. Since we have a polarizability
curve L(t) for each of the three axes, there are a to-
tal of 9 parameters to be estimated. Then, we set a
distance threshold value, above which, the remaining
parameter space is �lled with values that we attribute
to clutter (Figure 1).

Figure 1: Parameter space depicting clutter design
strategy; shown is a simpli�ed 2D parameter
space while our approach uses a 9-dimensional
parameter space.

The architecture of both CNNs is the same but the
�rst one is trained as a binary classi�er that outputs
a map which labels data as either background or TOI

(target of interest) whereas the second one is a multi-
class classi�er that outputs a map with UXO type
class. This two-step approach is mainly done due to
the need to separate anomalies and background data
in order to estimate spatially correlated noise from
the �eld data and add it to the training data. This
step was found crucial to improve classi�cation results
of �eld data with our CNN.

The output of the second CNN is a classi�cation map
which may also be expressed as a set of probability
maps, each showing the data points likelihood of be-
longing to a certain class. To obtain a single class for
each anomaly identi�ed, we simply take the average
probability values for all data points within a certain
cell surrounding the anomaly (such cells are picked
manually from the previous binary map) and select
the class with the highest average probability (Figure
4).

Test data

We tested our approach using �eld data acquired with
the UltraTEMA-4 system in the Sequim Bay marine
test site (Funk et al., 2022). The �rst CNN of our
work�ow was trained with 20,000 examples of syn-
thetic data and binary label masks, while the second
CNN was trained with 400,000 examples of data and
multi-class label masks. Classi�cation results for the
�eld data show that our approach detects all UXOs
and discriminates ∼70% of the clutter (Figure 5).

A preprocessing step was used to remove the EM
response of conductive seawater and sediments but
some spatially correlated noise still remains in the
data. Our work�ow is able to cope with this by us-
ing the �rst CNN to separate background signal from
anomalies in the �eld data. Then, we randomly sam-
ple pieces of this background signal and add them to
the training dataset of the second CNN.

Discussion

A key feature of our CNN is its segmentation-like ar-
chitecture. Compared to a �rst version of the CNN
(Heagy et al., 2020), this new architecture is able
to provide higher-resolution classi�cation maps which
do not require interpolation and therefore is less likely
to miss small objects. However, our CNN has not
been trained for multi-target scenarios (two objects
close together i.e. in the same spatial window) hence
it may lead to errors for such cases. In future work, we
plan to explore this multi-target scenario by including
these cases in the training dataset of our CNN.
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The clutter design is also an important part of our ap-
proach. As with any machine learning approach, the
CNN needs to be trained with examples not only of all
UXOs but also with all possible clutter objects. The
physics-based parameterization used here (Equation
1) attempts to exhaustively cover all possible clutter
objects by setting a distance in the parameter space.
The value for this distance has to be tuned in order
to maximize clutter discrimination without decreas-
ing UXO detection. This distance may be chosen us-
ing a line of synthetic data that includes both UXOs
and objects with the expected dimensions of clutter
and/or with a �eld calibration line that is usually
available for UXO clearance projects.

Other choices such as grouping the UXO objects,
adding random noise to the training dataset and aver-
aging probabilities for overlapping (sliding) windows
have also slightly improved the performance of our
second CNN.

Conclusion

Modern EMI systems used for UXO classi�cation col-
lect spatially dense data with su�cient information
to classify di�erent types of UXO and discriminate
clutter. The traditional approach for classi�cation
is based on inversion and polarizability curve match-
ing. We developed a CNN-based approach for UXO
classi�cation directly from EMI data. Our approach
uses two CNNs, the �rst one for anomaly detection
and the second one for classi�cation. Their architec-
tures follow an image segmentation structure where
the output preserves spatial dimensions of the input
and therefore produce high resolution classi�cation
maps. The CNNs were trained with synthetic data
using a dipole model and considering UXOs and all
possible clutter objects, which were designed in a
physics-based parameter space. Spatially and tem-
porally correlated noise that is consistent with that
of the �eld is also added to the training dataset to
improve classi�cation results. Our work�ow was ap-
plied to marine EMI dataset from a test site where it
successfully detected all of the UXOs while discrimi-
nating ∼70% of the clutter.
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Figure 2: Proposed CNN architecture to detect and classify UXO directly from EMI data.

Figure 3: De�ning label masks from EMI data.

Figure 4: Computing average probabilities to assign a �nal label from the CNN output.
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Figure 5: Classi�cation for Sequim Bay �eld data (2021), colors indicate the classi�cation map produced by
the CNN and shown labels are given by our voting system.
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