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SUMMARY

A gradient-based roughness operator that has the capability of including geological orientation information such
as strike and dip angles into minimum-structure inversions using unstructured tetrahedral meshes is proposed.
In contrast to the majority of the gradient-based methods that consider a cell in a package with its neighbours
to form these types of roughness operators, our proposed method calculates the roughness operators between
the two adjacent cells. Hence, the proposed method is able to construct models with sharper boundaries for
the scenarios in which the regularization function is measured by an ¢; norm compared to the methods that

consider a cell in a package with its neighbours.
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INTRODUCTION

Roughness operators were introduced into geophysi-
cal inversion— minimum-structure or Occam’s style
of inversion— to reduce the non-uniqueness of the in-
verse problem (Constable et al., 1987) and to enable
one to incorporate a priori information into the in-
version framework to obtain more plausible models
(e.g., Li & Oldenburg, 2000). Incorporating a priori
information such as structural orientation informa-
tion (strike, and dip angles) into the inversion, par-
ticularly for survey methods with limited depth res-
olution such as gravity, magnetics, electric, and elec-
tromagnetic methods such as magnetotellurics (MT),
is important.

Designing roughness operators that allow one to in-
corporate geological orientation information into in-
versions using unstructured tetrahedral meshes is not
as straightforward as for inversions using structured
meshes due to the complex geometry of the unstruc-
tured meshes (Lelievre & Farquharson, 2013). Per-
haps the most simple and robust method of forming
the roughness operators for unstructured tetrahedral
meshes is the one that calculates the physical prop-
erty differences across the internal mesh faces (Giin-
ther et al., 2006). However, this method or the meth-
ods proposed by Usui (2015) and Ozyildirim et al.
(2017) are not able to incorporate geological orienta-
tion information such as strike, dip, and tilt angles
into the inversion framework.

A few methods have been proposed that enable one
to incorporate geological orientation information into

the inversions using unstructured tetrahedral meshes.
The majority of these methods consider a cell in a
package with its neighbors to form the roughness op-
erators. For example, Lelievre & Farquharson (2013)
consider a cell in a package with its neighbours that
share a common edge/face, Key (2016) consider a cell
in a package with its neighbours that share a common
node, and Jordi et al. (2018) go beyond the nearest
neighbours of each inversion cell using the correla-
tion function to form the roughness operators. Al-
though these methods are able to incorporate geo-
logical information into the inversion framework suc-
cessfully, they are not able to construct models with
sharp boundaries for the scenarios in which the regu-
larization function is measured by an £; norm due to
the package issue.

To address this package issue, we adapt and ex-
tend the method proposed by Giinther et al. (2006),
called xyz-Giinther, to form the roughness operators
that allow the inclusion of geological information into
the inversion framework and to construct piecewise-
constant, blocky models for the scenarios that the
regularization function is measured using an ¢; norm.
Ekblom’s measure (Ekblom, 1973) is adopted to mea-
sure the regularization function due to its being nu-
merically well-behaved. The iteratively reweighted
least squares (IRLS) method (e.g., Farquharson &
Oldenburg, 1998) is utilized to minimize the inverse
problem. In the following, the minimum-structure
inverse problem is briefly described, then the xyz-
Giinther method and its capability on synthetic grav-
ity data of a dipping prism are investigated.
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MINIMUM-STRUCTURE INVERSION

The objective function that we design to do a
minimum-structure inversion consists of a data-misfit
term, ¢4, and a regularization term, ¢,,, (e.g., Con-
stable et al., 1987; Smith & Booker, 1988),

®(m) = ¢a(m) + B¢ (m), (1)

where the model vector m contains the physical prop-
erty values of the inversion cells. The trade-off pa-
rameter, 3, controls the relative contribution of the
data-misfit and the regularization terms in the ob-
jective function. The data-misfit term measures the
difference between the observed noisy data, d‘;bs, and
predicted data, d? red which is scaled by the standard
deviation of the noise, o;:

Ng diObs _ dfTed(m) )2

2
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where Ny is the number of data points. The regular-
ization term consists of a roughness term, ¢,, and a
smallness term, ¢, (Li & Oldenburg, 1998),

¢m(m) = a, ¢(m) + a5 ¢s(m), (3)

where the roughness term measures the amount and
type of model structure and the smallness term mea-
sures the difference between the constructed model
and the reference model, m,..¢,

omiam) =, [ (W) I v+ |
v : (4
as/v(W(r) (m—m,,»ef)) dv,

where p represents an {,-norm measure and W(r)
is the distance/depth/sensitivity weighting function.
Potential data such as gravity and magnetic data
have limited depth resolution (Li & Oldenburg, 1998),
hence, weighting functions are applied to the rough-
ness and smallness terms to counteract the natural
decay of the kernels with depth and consequently pre-
vent the construction of the features in the model near
the surface (Leliévre & Oldenburg, 2009).

0
The roughness term I in Eq. 4 follows the approach

of Giinther et al. (200r6) and measures the physical
property differences between two adjacent cells (and
is not a full gradient of the model). This roughness
term in this form is not able to incorporate geological
orientation information into the inversion framework.
To address this problem, we adopt and extend this
method, called xyz-Giinther, such that one be able to
incorporate geological information into the inversion
framework.

XYZ-GUNTHER METHOD

Our proposed method calculates the directional

. m. . . om
derivatives, ——7, instead of the derivatives, a5
r

r
of the physical properties between the two adjacent
cells,

a, (%:%) = (%:i) {az (12 — 1) + 5
oy (92 =) +ax (22— )

where r is the distance between the centres of the
two adjacent cells, and 7 is the unit vector directed
between the centres of the two adjacent cells. The
x1,Y1, 21 and o, Yo, 22 are the coordinates of the cen-
tres of the two adjacent cells.

To obtain the roughness operators in the geology co-
ordinate system, we follow Li & Oldenburg (2000) and
apply the rotation matrix R which contains orienta-
tion information of geological structure on the rough-
ness operators calculated in the Cartesian coordinate
system (i.e., Eq.5):

om om om\7T
—R(afay’az) -+ (6)

To construct models with sharp boundaries, the reg-
ularization function can be measured by non-¢s-norm
measures (e.g., Farquharson & Oldenburg, 1998; Far-
quharson, 2008). Ekbloms’s measure (Ekblom, 1973),
which is a perturbed version of an £, norm, is adopted
to measure the regularization function due to its be-
ing numerically well-behaved:

om om om\*
ox'’ oy’ 0z

plas) = (27 + )P, (7)

where x; are elements of the vector that is supposed
to be minimized, and ¢ is a small number. As the ¢
gets small, this measure approaches an £, norm. The
iteratively reweighted least squares (IRLS) method
(e.g., Farquharson & Oldenburg, 1998) is utilized to
minimize our objective function.

EXAMPLES

To evaluate the capability and the performance of
the proposed xyz-Giinther method, the vertical com-
ponent of the surface gravity data of a dipping prism
(Fig. 1) is inverted. The strike, dip, and tilt angles of
the dipping prism are (0°, 45°, 0°). The linear trend
approach (Leliévre & Farquharson, 2013) was imple-
mented and applied to the same model to investigate
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the package issue. To invert the data, Gaussian noise
with zero mean and standard deviation of 1% of the
maximum absolute value of the data was added to
the synthetic data generated using Okabe’s method
(Okabe, 1979).

Fig. 2 illustrates the constructed density models of
the dipping prism for the scenarios that the regular-
ization function is measured by an £5 norm. The left,
middle, and right panels are, respectively, associated
with the density models constructed by the original
method of Giinther et al. (2006), the xyz-Giinther
method, and the linear trend approach (Lelievre &
Farquharson, 2013) by assigning smoothness weights
(af, o, of)=(1.0, 1.0, 10*) everywhere in the in-
version domain. The constructed density models us-
ing the xyz-Giinther method (panels b & e) and the
linear trend approach (panels ¢ & f) have a better
representation of the dipping prism than the model
constructed using the Giinther et al. (2006) method
(panels a & d) due to incorporating geological infor-
mation into the inversion framework.
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Figure 1: A 3D view of the dipping prism model.

In contrast to the fuzzy and smeared-out density
models constructed by an ¢ norm (Fig.2), the den-
sity models constructed by an ¢; norm (Fig.3) are
piecewise-constant, and blocky with sharper bound-
aries. The left, middle, and right panels are as-
sociated, respectively, with the density models con-
structed by the Giinther et al. (2006) method, the
xyz-Glinther method, and the linear trend approach
(Leliévre & Farquharson, 2013) by assigning (a7, a,
al)= (1.0, 1.0, 10®) everywhere in the inversion do-
main. Although the constructed density models using
the xyz-Giinther method (panels b & ¢) and the lin-
ear trend approach (panels ¢ & f) have a better rep-
resentation of the dipping prism extension compared
to the model constructed using the Giinther et al.
(2006) method (panels a & d), the constructed den-

sity models using the Giinther et al. (2006) method
still demonstrate that the subsurface structure is not
vertical and has a dip. The density models con-
structed using the Giinther et al. (2006) method (pan-
els a & d) suggest that the diagonal matrices that Far-
quharson (2008) introduces into the inversion frame-
work using structured meshes to impose a dip on the
models constructed by an ¢; norm are not needed for
the inversions using unstructured tetrahedral meshes.

The constructed density models using the Giinther
et al. (2006) method and the xyz-Giinther method
have a sharper boundary than the model constructed
using the linear trend approach due to the package
issue. The package issue that the linear trend ap-
proach suffers from gets more severe for the methods
that consider a larger number of neighbour cells of
the inversion cell to form the gradient operators (e.g.,
Key, 2016; Jordi et al., 2018).

The top panels in Figs. 2 & 3 demonstrate the density
models constructed by applying the depth weight-
ing function outside the roughness operators, i.e., the
proper location, and the bottom panels of Figs.2 & 3
demonstrate the density models constructed for the
scenarios that the depth weighting function is ap-
plied inside the roughness operators. These exam-
ples demonstrate that, although applying the depth
weighting function inside or outside the roughness
operators measured by an ¢ norm does not affect
the density models, applying this function inside or
outside the roughness operators measured by an ¢,
norm does affect the constructed density models. The
density models constructed by applying the depth
weighting function inside the roughness operators
have a trend and are not as sharp as the density
models constructed by applying the depth weighting
function outside the roughness operators.

CONCLUSION

The synthetic gravity examples demonstrate that the
proposed method xyz-Giinther is able to incorporate
geological orientation information effectively into the
inversion procedure. This method is also able to con-
struct more piecewise-constant models with sharper
boundaries compared to the models constructed us-
ing methods that consider each cell in a package with
its neighbours if the regularization term is measured
by an ¢; norm instead of an ¢ norm. The examples
also show that applying the depth weighting function
inside or outside of the roughness operators measured
by an £; norm does affect the constructed models. Fu-
ture work will involve implementing the xyz-Giinther
method to electromagnetic inversion.
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Figure 2: Vertical sections along the x-axis of the density models constructed using an ¢ norm. The left,
middle, and right panels correspond to the 3D density models constructed using the Giinther et al.
(2006) method, the xyz-Giinther method, and the linear trend approach (Leliévre & Farquharson, 2013),
respectively. The top and bottom panels correspond to the scenarios that the depth weighting function
is applied outside and inside of the gradient operators, respectively. The white solid line indicates the
location of the true model.

Figure 3: Vertical sections along the x axis of the density models constructed using an ¢; norm. The left,
middle, and right panels correspond to the 3D density models constructed using the Gilinther et al.
(2006) method, the xyz-Giinther method, and the linear trend approach (Leliévre & Farquharson, 2013),
respectively. The top and bottom panels correspond to the scenarios that the depth weighting function
is applied outside and inside of the gradient operators, respectively. The white solid line indicates the
location of the true model.
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