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SUMMARY 

Proper utilization of steel casings in the oil and gas development can amplify surface controlled source electromagnetic 

(CSEM) responses arising from small conductivity perturbations in the reservoir. This work established the capability of 

recovering the 3D distribution of injected fluid during the operation of fracturing with the presence of arbitrarily complex 

steel casings. Our approach incorporates steel casings into the conductivity model through the use of edge conductivity, a 

newly proposed physical property parameter defined as the product of the intrinsic conductivity and cross-sectional area of 

casing pipe. By assigning edge conductivities to mesh edges and taking them into account in the finite volume formulation, 

we efficiently capture the effects of casings without any mesh refinement. The inverse problem is solved by the Gauss-

Newton method with an objective function containing the smoothness constraints on models. Through a synthetic example 

involving realistic host rock resistivities and horizontal wells, we show that our algorithm can successfully map the 

directional flow of injected fluid flow using the top-casing source and electric field data acquired near the well head. 
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INTRODUCTION 

 

Electromagnetic methods are widely applied in assessing 

reservoir conditions, stimulating reservoir volume, and 

monitoring fracturing fluid migration during hydraulic 

fracturing operations (Commer et al., 2020; Hoversten and 

Schwarzbach, 2021; Li and Yang, 2021). 

 

Hydraulic fracturing imaging models typically involve 

steel casings with minimal radii and thicknesses 

significantly smaller than the overall size of rock 

formations. The presence of steel casings can generate 

distortion in CSEM data, necessitating sophisticated data 

processing techniques. However, numerous studies have 

acknowledged the positive contribution of steel casings to 

electromagnetic methods: they can enhance observed 

signals on the surface, especially for deep reservoirs with 

highly conductive hydraulic fracturing fluids (Weiss et al., 

2016; Heagy and Oldenburg, 2022; Hu et al., 2022). 

 

A number of inversion approaches for hydraulic fracturing 

fluid have been proposed. Some of them have focused on 

optimizing survey configurations to avoid simulating steel 

casings or to enhance signal amplitudes (Grayver et al., 

2014; Um et al., 2020; Hoversten and Schwarzbach, 2021). 

Others have simplified hydraulic fracturing fluids into 

two-dimensional octagonal or non-rectangular shapes 

(Zhang et al., 2020; Li and Yang, 2021). There are also 

studies relying on the location data, enforcing robust 

spatial constraints, or incorporating additional information 

during the inversion process. (Commer et al., 2020; Noh 

et al., 2020). 

 

In this study, we develop the 3D simulation algorithm that 

does not only take cell conductivities defined in mesh 

cells but also allows assigning edge conductivities to the 

mesh edges to present steel casings. During the inversion 

process, we recover the electrical conductivity of the 

region of interest while fixing the edge conductivities of 

the casings as a prior. By integrating the edge conductivity 

modeling into the 3D inversion, we enhance the accuracy 

of subsurface fluid imaging, and assist the monitoring of 

the fluid injection. 

 

METHODS 

 

Forward Modeling  

 

Our inversion is based on a 3D-modified finite-volume 

electromagnetic modeling algorithm (Hu et al., 2022). The 

governing partial differential equation for the total electric 

field in CSEM applications is obtained by eliminating the 

magnetic field in the Maxwell’s equations: 

 

∇ × ∇ × 𝑬 + 𝑖𝜔𝜇𝜎𝑬 = −𝑖𝜔𝜇𝑱𝒔,    (1) 

 

where 𝑬  represents the electric field,  ω is the angular 

frequency, μ is the magnetic permeability, 𝜎  and ε 

represent the electrical conductivity and permittivity, and 

𝑱𝒔 is the external current source.  

 

In Figure 1(a), the yellow-highlighted region represents a 

control volume that contains four conductive rectangular 

prisms oriented along the y-direction. The red-highlighted 

solid line represents a section of steel casing coinciding 
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with an edge of the control volume. Applying Stokes' 

theorem to equation (1), we derive  
 

∮ 𝑯
Γ

∙ 𝑑Γ =  ∬ ∇ × 𝑯 ∙ 𝑑
𝑆

𝑆 =  ∬ (σ𝑬 + 𝑱𝒔) ∙ 𝑑
𝑆

𝑆 (2) 

 

Considering the relatively small cross-sectional area of the 

steel casing, we can neglect its exact geometric details. 

Instead, we can use the concept of edge conductivity, 

which is the product of the cross-sectional area and 

electrical conductivity, and then readily compute the 

average electrical conductivity by using edge conductivity 

(Hu et al., 2022). Similar simulation strategies have also 

been developed for the finite element method (Weiss, 

2017). 

 

 

(a) 

 

(b) 

Figure 1: Modified finite volume method in a Cartesian, 

rectangular mesh. (a) A control volume defined 

around an edge in the y-direction. (b) Calculation of 

the averaged conductivity. 

 

Our algorithm uses the rectilinear mesh. To simulate 

arbitrary well paths in 3D space, our code approximate 

well paths using the surrounding mesh edges. The 

conductance of a casing segments not directly on mesh 

edges is redistributed to the nearest eight edges using 

orthogonal decomposition and tri-linear interpolation, 

with contributions from neighboring casing segments 

summed up for the total edge conductivity calculation.  

 

We carry out two casing-in-whole-space simulations, one 

original and the other as the rotated version of the original 

(Fig. 2) to validate the algorithm for arbitrary well paths. 

The background conductivity and the relative location 

information in the two simulations are identical. The 

findings depicted in Fig. 3 validate the accuracy of the 

algorithm. The rotation of the original configuration 

results in the casing not aligned perfectly with the grid. In 

both configurations, the amplitude and phase consistently 

follow a specific pattern. At the observation offsets 

beyond 125 meters from the steel casing, the relative 

differences are mostly within 8% for the amplitude and 

phase. 

 

 
(a) 

 
(b) 

 

Figure 2: Tilted well test. (a) The original and (b) rotated 

configuration. The steel casing is represented by non-zero 

edge conductivities on the color-coded mesh edges. The 

source is a grounded wire connecting the mid-point of a 

finite-length casing and a remote point. 
 

(a)                                                  (b) 

 
 

Figure 3: Electric field data at receivers in Figure 2 at 1 

Hz. (a) Amplitude; (b) Phase angle. 
 

Inverse modeling algorithm with steel casings 

 

Our inversion relies on a universal frequency-domain 

electromagnetic inversion framework with the objective 

function as follows 

ф(m) =
1

2
‖𝑊𝑑[𝐹(𝑚) − 𝑑𝑜𝑏𝑠]‖

2

2
 + 

𝛽

2
‖𝑊𝑚(𝑚 − 𝑚𝑟𝑒𝑓)‖

2

2
 (3) 



7th International Symposium on Three-Dimensional Electromagnetics 

Vancouver, BC, Canada, November 13–15, 2023 

 

 

   3/5 

where 𝑊𝑑 is a data-weighting matrix; 𝑑𝑜𝑏𝑠 and 𝐹(𝑚) are 

observed and predicted data, respectively; 𝑊𝑚  is the 

model weighting matrix; 𝑚𝑟𝑒𝑓  is the reference model 

containing a variety of prior geological information; and 
𝛽

2
 

is a regularization parameter. In our algorithm, the model 

in equation (3) is a stack of the cell, face, and edge 

conductivity model vectors. The smoothness constraint  

are applied to the face and edge conductivity parameters if 

they are to be recovered in the inversion 
 

 𝑊𝑚 =  [

𝑊𝑐

𝑊𝑓

𝑊𝑒

], 𝑚𝑟𝑒𝑓 =  [

𝑚𝑐

𝑚𝑓

𝑚𝑒

]. (4) 

 

We employ a Gauss-Newton approach to solve the 

optimization problem that minimizes equation (3). The 

model updates are calculated by iteratively solving 
 

[Re{𝐽𝐻𝑊𝑑
𝐻𝑊𝑑𝐽}+β𝑊𝑚

𝑇𝑊𝑚]𝛿𝑚 = − [Re{𝐽𝐻𝑊𝑑
𝐻𝑊𝑑 

[𝐹(𝑚) − 𝑑𝑜𝑏𝑠]} + β𝑊𝑚
𝑇𝑊𝑚(𝑚 − 𝑚𝑟𝑒𝑓)].  (5) 

 

Here, 𝛿m is a model update vector, and 𝐽 ∈ Χ 𝑁𝑑×𝑁𝑚 is the 

weighted sensitivity matrix that represents the partial 

derivatives of the data to the model parameters. The 

matrix on the left-hand side corresponds to the regularized 

approximate Hessian, while the right side represents the 

negative gradient indicating the descent direction.  

 

In some cases, it is possible to directly solve and store the 

sensitivity matrix, a method referred to as explicit solving. 

However, storing the sensitivity matrix can consume 

significant memory resources when dealing with a large 

volume of data or a high number of model parameters. 

The limitation becomes especially relevant when 

considering frequency-domain 3D inversion with steel 

casing, where the model parameters include the cell, face, 

and edge elements. As a result, this paper opts for an 

implicit approach to compute the sensitivity matrix for 

matrix-vector product operation required by equation (5): 
 

𝐽 ∙ 𝛿𝑚 = Q𝑨−𝟏diag(𝑬) · 𝑨𝒎𝟐𝒆 · diag(m) · 𝛿𝑚, (6) 

𝐽𝐻 ∙ 𝛿𝑚 = diag(m) · 𝑨𝒎𝟐𝒆
T · diag(𝑬) · (𝑨−𝟏)

𝑯
· 𝐐T · 𝛿𝑚, (7) 

 

where A represents the forward operator and Q represents 

the data projection matrix. A sparse matrix  𝑨𝒎𝟐𝒆 can map 

conductivity values from cell centers to edges. We 

establish two categories of model parameters for the 

inversion process: active and inactive. All model 

parameters are utilized in the forward modeling, but 

updates are exclusively applied to those designated as 

active during the inversion. 

 

NUMERICAL EXPERIMENTS 

 

We validate our computational framework of inversion 

using a synthetic fracturing monitoring example. 

Specifically, we design simulations involving three steel-

cased wells positioned at a depth of 1900 m within a 

layered background model. The separation between the 

vertical wells is 50 m, while for the horizontal well is 350 

m. The central wellhead is directly connected to an 

electrical current source of 1 A at 0.01 Hz, with a remote 

electrode situated 2 km away. To capture the complete 

electrical field pattern, we employ a uniform measurement 

grid around the central wellhead, covering a 300×300 m 

area with measurements every 25 m (Fig. 4(a)). 
 

          (a)                                          (b)    

 
 

Figure 4: Setup of the synthetic inversion example. (a) 

The three steel-cased wells, source electrodes, receivers, 

and injected fluid; (b) Layered background conductivity 

model. 

 

The injected fluid was represented by a conductive block 

measuring 150 × 300 × 200 m, with a conductivity of 1 

S/m. This block is asymmetrically distributed with respect 

to the middle well, representing a flow towards the +y 

direction. The synthetic data generated through forward 

modeling serve as the observed data for the subsequent 

inversion. In the inversion, a constant edge conductivity 

value of 150,000 S·m for all well sections is assumed. 

 

To accurately define the active region for recovery of 

fluid’s cell conductivity, the information of perforation 

position is used as a prior. Such information constrains 

active cells within a reasonable region: 0 to 500 m in the 

x-direction, -500 to 500 m in the y-direction, and -1800 to 

-2200 m in the z-direction. 

 

Our inversion results successfully recovered the 

preferential fluid flow towards the +y direction (Fig. 5). 

This phenomenon was attributed to the enhanced 

sensitivity of our survey to horizontal fluid movements, a 

consequence of the parallel configuration of the wells. 

The blurred boundaries in our inversion results were 

anticipated outcomes of the smoothness constraint. The 

synthetic example indicates the effectiveness of our 

approach in capturing the underlying fluid dynamics. The 

amplitude and phase of the surface data have also been 

well-fitted (Fig. 6). 
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（a） 

 
（b） 

Figure 5: Inversion results of the hydraulic fracturing 

fluid.  (a) The model is sliced at Y =0 m, X = 360 m, and 

Z = -1900 m. The solid black lines represent the true fluid 

model and the dotted lines indicate the well. (b) 3D views 

of the true model (left) and recovered model (right) with 

the steel casings. 

 

CONCLUSION 

 

Our study established the capability of 3D CSEM 

inversion in the presence of steel casings. We address the 

complexity and cost associated with rigorously modeling 

of steel casing in CSEM inversions by incorporating edge 

conductivity into the model. Our approach eliminates the 

need for intricate mesh refinement, and updates only 

specific model elements exclusively during the inversion, 

simplifying the overall computational procedure. These 

strategies ensure that our algorithm is computationally 

efficient and cost-effective. 

 

Our proposed algorithm stands out for its simplicity, 

speed, and practical implementation. It does not demand 

extensive computational resources or intricate mesh 

adjustments, making it a viable choice for real-world 

applications. The effectiveness of our approach is 

demonstrated through a practical example of fracturing 

monitoring, in which the directional flow of injected fluid 

is recovered as a 3D conductivity model by using a top-

casing source and surface receivers. 
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Figure 6: Data fitting of the inversion. The first row is for the amplitude, and the second row for the phase angle. The solid 

black lines represent the projection of the casings. A top-casing source is connected to the middle wellhead. 
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