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SUMMARY 

Egbert (2012) developed a hybrid multi-transmitter (mTX) OCCAM-Conjugate Gradient (CG) 
algorithm and illustrated basic ideas on a simple 2D MT inverse problem.  Here we present results 
of application of these ideas to a more computationally challenging problem, 3D marine controlled-
source EM (mCSEM).  There are two main aspects of our approach.   First, we save results of 
calculations required for an iterative solution of the data-space Gauss-Newton (GN) normal 
equations and use these to construct a low dimensional approximation of the full Jacobian.   Once 
computed, this allows rapid computation of trial inverse solutions for a range of regularization 
parameters, so Occam-type schemes become practical even for very large problems.   The hybrid 
is based on the Golub-Kahan bidiagonalization of the Jacobian matrix.   Second, every transmitter 
(Tx; i.e., different frequency, or location) requires solution of a separate adjoint problem, associated 
with the gradient of the data misfit for that separate Tx dataset.  By saving results of these distinct 
calculations (instead of summing them, to compute the gradient of the total data misfit) we can form 
a more complete approximation to the Jacobian.  Furthermore, with suitable modifications to the 
iterative CG algorithm (Egbert, 2012), more rapid (fewer adjoint and forward solves) and stable 
solution of the G-N equations can be achieved.  We demonstrate the effectiveness of our methods 
using synthetic datasets based on a realistic 3D resistivity model constructed for the Campos Basin 
on the Brazilian margin.  We also demonstrate how the mTX algorithm can be useful for joint 
inversion of multiple EM data types, specifically for combining MT and mCSEM data.   The hybrid 
scheme allows for efficient exploration of relative weights for the different measured data types, 
using the approximate Jacobian.  The approximated Jacobian can also be used for linearized 
uncertainty and resolution analysis of the solutions obtained. 
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INTRODUCTION 
 
In this work we discuss some new approaches to 
minimization of the quadratic penalty functional 

Φ(𝐦, 𝐝) = (𝐝 − 𝒇(𝐦)+!(𝐝 − 𝒇(𝐦))
+ 𝜆𝐦"𝐦																	(1)	

where 𝐦 is the model parameter 𝐝  the data vector, and  
𝑓(𝐦) the forward mapping.  Note that as our focus here 
is on minimization algorithms, we ignore data and model 
“covariances” in the data misfit and model regularization 
terms in (1).   In practice this simple generic form may 
be obtained by suitable transformation of model and data 
space vectors.  Gradient-based linearized search 
schemes such as NLCG or LBFGS have proven to be an 
effective and efficient way to minimize the quadratic 
penalty functional.  However, there are potential 
advantages to a Gauss-Newton (GN) approach such as 
OCCAM (Constable et al., 1987), as we discuss.   In the 

simplest approach a GN scheme requires computation of 
the full Jacobian (sensitivity) matrix 𝐉 , followed by 
computation of a cross-product matrix such as 𝐉"𝐉, and 
then solution of a large system of linear normal equations.  
In a data-space variant of the OCCAM scheme 
(Siripunvaraporn et al., 2005) the normal equations take 
the form 
(𝐉	𝐉" + 𝜆𝐈)𝐛 = 𝐝4 = 𝐝 − 𝒇(𝐦#) + 𝐉𝐦#															(2)			 

with the updated model parameter at iteration 𝑛 + 1 
computed as  𝐦#$%	 = J"𝐛 .  In the OCCAM scheme 
the parameter 𝜆  is varied, initially to minimize data 
misfit, then to find the smallest model consistent with the 
desired misfit tolerance.  OCCAM thus automatically 
optimizes the regularization (tradeoff) parameter. 
 
While OCCAM has been widely used in 1D and 2D 
inverse problems, application in 3D is more challenging, 
due to the need to compute the full Jacobian, to form the 
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large cross-product matrices, and to solve a large system 
of normal equations.    These equations can also be 
solved using conjugate gradients (CG) without first 
computing 𝐉  .   Each step requires multiplication of 
arbitrary model vectors (e.g.,𝑚#) by 𝐉, and data vectors 
(e.g., 𝐛 ) by 𝐉" .   These operations involve one 
forward/adjoint solution, respectively, of the 3D EM 
PDE.  While this CG approach makes a GN approach 
more practical, it is not immediately obvious how to 
implement OCCAM – seemingly, the CG iterations must 
be run repeatedly for different values of the regularization 
parameter 𝜆. 
 
Here we make two points:  First, we can save results of 
calculations required for an iterative CG solution of the 
data-space Gauss-Newton (GN) normal equations and use 
these to construct a low dimensional approximation of the 
full Jacobian.   Once computed, this allows rapid 
computation of trial inverse solutions for a range of 
regularization parameters, so Occam-type schemes 
become practical even for very large problems.  Second, 
every transmitter (Tx; i.e., different frequency, or 
location) requires solution of a separate adjoint problem, 
associated with the gradient of the data misfit for that 
separate Tx dataset.  By saving results of these distinct 
calculations (instead of summing them, to compute the 
gradient of the total data misfit) we can form a more 
complete approximation to the Jacobian, and solve the G-
N equations with fewer adjoint and forward 
computations.    
 

METHODS 
 
The Basic Hybrid Algorithm (BDORTH): After 𝐾	 steps 
Lanczos bi-diagonalization of the Jacobian matrix 
produces the decomposition 

𝐉"𝐔' = 𝐕'𝐁'									(3) 
Here 𝐔' = [𝒖%, … , 𝐮']  and	𝐕' = [	𝐯%, …		 , 𝐯']  are 
orthogonal matrices whose columns are, respectively, 
data and model space vectors, and 𝐁'  is bidiagonal.   
Each step in the algorithm requires multiplication by 
𝐉" and 𝐉 .   Saving these matrices (i.e., 𝐾		data and 
model space vectors) we can project the Jacobian and data 
vectors, into a 𝐾  dimensional subspace and solve the 
equivalent of Eq. (2) 

(𝐔'" 𝐉	𝐉"𝐔' + 𝜆𝐈)𝐛( = (𝐁𝑲𝐁𝑲𝑻 + 𝜆𝐈)
= 𝐔'" 	𝐝	G 																	(𝟒) 

The approximate model space solution is then computed 
as 𝐦( = 𝐕'𝐛( .   This can be computed for any 𝜆 
making an approximate OCCAM scheme possible.  We 
refer to this algorithm here as “BDORTH”.  This is an 
example of what has often been referred to as a hybrid 
algorithm for the iterative solution of linear equations. 
 
Multi-transmitter Extension (BDMTX): In this variant we 
save computations (both data and model space vectors 

𝐔'  and 𝐕')   separately for each transmitter (Tx; 
different source dipole source location or different 
frequency) separately.   Because each Tx requires 
independent forward and adjoint calculations (the 
costliest step in the inversion) the additional 
computational burden is minimal (although memory 
requirements are generally increased).  Egbert (2012) 
describes a modified Lanczos scheme that works well.   
We summarize briefly here: 
 
We have 𝑗 = 1,… , 𝐽	 transmitters.   At each step 𝑘 =
1,…𝐾  in the iterative algorithm we compute  and save 
	𝐽 data space vectors	𝐮+, , and model space vectors 𝐯-, 
one each for each Tx, and for each iterative step.   We 
collect these as 

𝐔, = [𝐮%%…𝐮%,	| …		|		𝐮-, …𝐮-,] 	
= [𝐖%…𝐖-]									(5) 

𝐕, = [𝐉%"𝐮%%…𝐉%"𝐮%,	| …		|		𝐉."𝐮-, …𝐉."𝐮-,]											(6) 
The first step (𝑘 = 1	)	 is initialized as 𝒖+% = 𝒅+/|R𝒅+|R		 
where 𝐝+ is the data vector for Tx 𝑗	.  To compute data 
space vectors for t step 𝑘	 we solve the projected normal 
space equations 

(𝐕,"𝐕, + 𝜆𝐈)𝐛S = 	[𝐝%"𝐔%, …𝐝/!"
" 𝐔/!",]

" 
The coefficient matrix of the symmetric system is 
𝐽𝑘 × 𝐽𝑘, so even with hundreds of Tx the computational 
cost is negligible.  Then compute the “trial solution”  
𝐦, = 𝐕,𝐛S  , multiply by Jacobian for eaxh Tx, 𝐜+, =
𝐉+𝒎,  and finally compute 	𝐞+, = 	 𝐜+, -	 𝐖+ 	 𝐖+

"𝒄+,	 	 	
and	 𝒖+,$% = 𝒆+,/|R𝒆+,|R .	 	 This	 is	 iterated	 until	 a	
sufficiently	 accurate	 solution	 to	 the	 (nprojected)	
normal	equations	is	obtained.	 	 	 The	scheme	is	quite	
similar	 to	 the	 original	 Lanczos	 decomposition,	
although	a	small	linear	system	must	be	solved	at	each	
step	to	couple	equations	for	all	Tx. 
 

RESULTS  
 
As an illustration of these methods we consider a very 
simple toy marine CSEM synthetic dataset.  The model, 
and transmitter and receiver configuration is shown in 
Figure 1.   The model is very simple, a local resistive 
body in a layered background with flat bottom bathymetry 
(depth of 1000 m).   There are 6 Tx locations and threwe 
frequencies, so the total number of transmitters is 18. 
 

 
Figure 1:  model and data configuration for tests. 
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Results from the new algorithms proposed here, along with 
from OCCAM (full sensitivity calculation, and a more 
commonly used gradient search scheme (NLCG), are 
shown in Figure 2.   Number of forward and adjoint solves 
required are summarized in the figure caption. 
 
Both BDORTH and BDMTX solve the data space normal 
equations iteratively, generating an approximation to the 
Jacobian along the way.  Convergence is significantly 
more rapid, and apparently smoother and more stable with 
the BDMTX approach, as illustrated in Figure 3. 
 
DISCUSSION  
 
We have presented two hybrid schemes, which generate an 
approximate Jacobian through iterative solution of the data-
space normal equations for a Gauss-Newton inversion 
algorithm.  Both are about as efficient (in terms of number 
of forward and adjoint solves) as a gradient search method 
such as NLCG, and allow use of an OCCAM approach to 
choice of regularization parameter.  The approximate 
Jacobian could also be used for linearized resolution 
analysis, something that is not possible with NLCG.  

These hybrid schemes may also be useful for joint 
inversion of, for example, CSEM and MT data.  With two 
different data types the appropriate balance between fitting 
each type often requires multiple runs with different 
relative weights.  This exploration could be done quite 
efficiently using the computed approximate Jacobian, 
especially with the BDMTX scheme.   
 

 
  

Figure 2:  Inversion results for four algorithms: OCCAM, 
based on full Jacobian computation, BDORTH, the basic 
hybris scheme based on saving sensitivity computations 
from the Lanczos bidiagonalization, BDMTX, the multi-
transmitter extension, and a the NLCG algorithm, as 
implemented in the ModEM code of Kelbert et al (2014; 
extended to CSEM inversion), unpublished).   All 
algortihms converged to similar results for this simple 
problem.   However the OCCAM scheme required 9270 
adjoint/forward solves – making this impractical for more 
realistic problems.  Other approaches required only 333 
(NLCG), 354 (BDORTH) and 152 (BDMTX).     

Figure 3: comparison of convergence of the inner 
loop (iterative solution to normal equations) for 3 
outer loop steps.  Dashed lines are for the multi-
transmitter scheme, which reduces required number 
of iterations by a factor of roughly 2.5, and shows 
smoother and more stable convergence behaviour.  
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