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SUMMARY 

Despite the fast development of the computer hardware and numerical simulation methods, the limited 

efficiency to solve the large-scale partial differential equations (PDE) in forward modelling is still the major obstacle 

to fast, real-time electromagnetic geophysical inversions. To address this issue, we introduce a reduced basis method 

to rapidly solve the PDE problem arise from the finite-difference discretization of curl-curl equations. The reduced 

basis method aims to project the full solution space of a PDE problem to its lower dimensional subspace, with a 

series of transformation basis. The reduced solution space can therefore be rapidly calculated by the spanning of a 

series of basis functions from the orthonormalization of a number of full solutions. The result from comparisons 

between the new method against its conventional counterpart with COMMEMI-3D synthetic test shows a promising 

speed-up of more than 100x. This may provide a new method to deal with challenges from near real-time simulations 

in industrial applications, or Bayesian inversions that requires millions of forward calculations.  

 
Keywords: Reduced Basis, Electromagnetics, Forward Modelling, Finite Difference, Curl-Curl Equations 
 
 

INTRODUCTION 
 

In PDE based optimization problems, the speed of 

the forward modelling has always been the key to 

efficiently deal with large-scale problems, as with 

geophysical inversions. The rapid development of 3D 

modelling methods in the past decades have made it 

possible to perform complex large scale 3D EM 

inversions, which allow us to better understand the 

Earth. Recently, increasing applications of EM 

monitoring methods have emerged, like the fracturing 

monitoring in the oil/gas industry, or the groundwater 

monitoring in environmental engineering. All of these 

applications require repeated near real-time inversion 

results, which in turn calls for forward simulations with 

extremely high efficiency. However, even for modern 

clusters, conventional methods may still take hundreds 

to thousands seconds to solve the PDE problems, 

which fails to satisfy the requirement of the near real-

time applications. Here we introduce a new reduced 

basis method (RBM) to rapidly solve the PDE problem 

arise from the finite-difference discretization of time-

harmonic Maxwell equations, which are the foundation 

of most frequency domain EM problems. We show that 

our RBM can efficiently project the full solution space 

of a PDE problem to its lower dimensional subspace 

(Manassero et al., 2020), which drastically reduces the 

computational cost, while maintaining acceptable 

accuracy level.  

METHODS 
 
    For most frequency-domain EM problems, the 

time-harmonic Maxwell’s equations can be expressed 

as: 
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∇ × 𝐸 = −𝑖𝜔𝜇𝐻
∇ × 𝐻 = 𝑖𝜔𝜀𝐸 + 𝐽 + 𝐽!"#, (1) 

where E and H are the electric and magnetic fields, ω 
is angular frequency, ε is the electric permittivity of the 
model domain,  is the permeability, while 𝐽 = 	𝜎𝐸 
denotes the electric conduction currents in the domain 
and	𝐽!"# stands for the external current forcing.  
For quasi-static approximation (displacement currents 
are negligible) Equations (1) can be reduced to a 
second-order Curl-Curl problem based on electric 
fields. Without loss of generality, we can merge the 
internal and external current terms:  
 
∇ × ∇ × 𝐸 + 𝑖𝜔𝜇𝜎𝐸 = 𝐽, (2) 

The equations (2) are often discretized (using e.g. 
finite element or finite difference methods) as linear 
equations of dimension N:  

A(µ)x(µ) = 	b(µ),	    (3) 

where A ∈ 	ℝ$×$ , b	and	x ∈ 	ℝ$ . Note that for a 
given forward modelling problem, the system matrix A 
and the right-hand side b should both be functions of 
the model parameter 𝝁 (in terms of physical and 
geometric property for a given parameter domain P). 
All the solutions x, which naturally also depend on the 
model parameter 𝝁,	form	a	Hilbert	space	(or	solution	
space)	 𝑉.	Here we define the original PDE problem as the 
“full order” (FO) system, with which we define the 
residual as:  
r(x	; µ) = 	b(µ) − A(µ)x,			∀	x ∈ 	ℝ$, (4) 
 
The reduced basis method 
 
For large scale 3D EM problems, solving the above FO 
system may entail significant computational costs, as 
the dimension of the problem (𝑁) can be forbiddingly 
large to solve. Consider a “reduced order” (RO) system 
of dimension 𝑁& that approximates (3):  

A'(µ)x'(µ) = 	b'(µ),	    (5) 

where A'(µ) ∈ 	ℝ$!×$! , b'(µ)	and	x'(µ) ∈ 	ℝ$! . 
The problem can be greatly simplified, if we can find a 
projection, with which any x(µ)  in 𝑉  can be 

approximated well enough (Quarteroni et al., 2016). 
By a linear combination of the RO solutions, the FO 
solution can be expressed in the form of: 

x(µ) = 	𝕍x'(µ),     (6) 

where 𝕍 ∈ 	ℝ$×$!, is a µ − independent 
projection matrix, which maps the reduced solution 
space to the original solution space (𝑉& → 𝑉). In other 
words, eq. (6) can be considered as the algebraic form 
of a Galerkin method over a subspace of dimension 
𝑁& from the 𝑁 dimension space. The solution x' 
of (5), can be determined by enforcing a suitable 
orthogonality criterion on the residual of the solution. 
We therefore have a FO residual estimation of:  

r' = r(𝕍x'	; µ),     (7) 

using the RO solution from (5). Now if we can 
enforce the condition that the orthogonal projection of 
residual (7) onto the reduced solution space 𝑉& is 
zero:   

𝕍(Pb(µ) − A(µ)𝕍x'(µ)Q = 0, (8) 

we obtain the RO problem (5) from the FO system. 
Then through this projection, we can map the reduced 
system from the FO system by:  

	 A'(µ) = 	𝕍(A(µ)𝕍,
b'(𝜇) = 𝕍(b(𝜇),

  (9) 

which effectively construct a reduced subspace of 
from the original space (dimension 𝑁 à 𝑁&).  

The assembly of the reduced basis functions 

To evaluate the reduced system (5), we still need to 
assemble the projection matrix 𝕍, sometimes called 
the reduced basis function (RBF) beforehand. To this 
end, we start from a set of FO solutions (a.k.a. 
snapshots):  

{x(µ)), x(µ*), … , x(µ')},  (11) 
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with respect to a set of R model parameters. We can 

build a set of R functions (called “basis functions”) by 

orthonormalize those snapshots  

{ν), ν*, … , ν'},   (12) 

regarding a suitable inner scaler product operation:   

Pν+, ν,Q' 	= 𝛿-. , 𝑤ℎ𝑒𝑟𝑒	1 ≤ 𝑗, 𝑘 ≤ 𝑅  (13) 

Then we can generate the reduced basis space by:   

𝑉& = 𝑠𝑝𝑎𝑛{ν), ν*, … , ν'}	

= 𝑠𝑝𝑎𝑛{x(µ)), x(µ*), … , x(µ')},  (14) 

which is nested (i.e., 𝑉&/) ⊂ 𝑉&). Since the reduced 

basis naturally also belongs to the original solution 

space 𝑉, we can expand the reduced basis function 

with respect to the original basis functions:  

𝜈0 = ∑ 𝜈0
(2)4

25) 𝜑2 , 1 ≤ 𝑚 ≤ 𝑁  (15) 

where 𝜑 = {𝜑), 𝜑*, … , 𝜑4} is the basis function of 

the original solution space 𝑉. Then the projection 

matrix can be assembled as:  

(𝕍)67 = 𝜈0
(2), 1 ≤ 𝑚 ≤ 𝑁& , 1 ≤ 𝑖 ≤ 𝑁,       (16) 

Exploiting the nested nature of 𝑉&, we may use a 

greedy algorithm to recursively select a number of 

snapshots for the reduced basis space, by a certain 

optimal criterion. For example, we can add more 

snapshots, till the residual (7) satisfies the precision 

requirement.  

In summary, the reduce basis method can be roughly 

divide into two stages:  

1. the offline stage:  

a) generate the original finite difference discretization 

of the curl-curl equations (3); 

b) calculate a number of FO solution snapshots (11) 

using greed algorithm, and: 

c) assemble the projection matrix (15) to build the 

reduced system; 

2. the online stage:  

a) build and solve the reduced system (5); 

b) recover the approximate solution of the full system 

(6) and appraise the residual with (8); 

SYNTHETIC EXAMPLES 
 

To test the performance of our new RB method, 

we compare the modelling performance of the new 

method against that of its conventional finite difference 

counterpart, using the COMMEMI-3D synthetic model 

for magnetotellurics (Zhdanov et al., 1997; Fig. 1). The 

model domain is discretized into a 71 by 71 by 53 

mesh, with a DoF of about 0.8 million. After the offline 

building stage of the reduced subspace (may take hours 

for personal computers), the DoFs of the approximate 

system can be reduced to merely a few hundred to 

thousand.  

 
 
Figure 1: parameter setup of the COMMEMI-3D2 model 

(modified from Zhdanov et al., 1997) 
 

To solve the full order linear system arises from 

the conventional FD method, we use an iterative QMR 

solver combined with divergence correction method. 

Block1: 0.01 S/m
Block2: 0.1 S/m
Block3: 0.001 S/m
Block4: 10 S/m
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As for the reduced system, we can use the direct 

method (Gaussian elimination with LU decomposition) 

as the DoF of the reduced system is small enough. As 

a result, the time for the forward problem reduces from 

about 105 s to less than 1s (Table 1) on a laptop 

computer with 8-core Apple M1 processor.  

 
Table 1: efficiency comparison between the conventional 

full and reduced order systems 

method Mode DoFs Period Walltime 

Full 
Order 

XY 826848 0.1s 103.20s 
100s 104.48 s 

YX 826848 0.1s 105.22 s 
100s 106.11 s 

Reduced 
Order 

XY 214 0.1s 0.93s 
100s 0.93s 

YX 228 0.1s 0.97s 
100s 0.98s 

 

On the other hand, the computed electromagnetic 

fields from the RO system show almost identical 

results, when compared with its FO counterpart (Fig. 

2), with acceptable precision with relative residual of < 

10-5. 

 
CONCLUSIONS 

 

We have developed a new reduced basis method 

to solve the time-harmonic Maxwell problem related to 

EM inversions. The efficiency of the new method 

allows us to rapidly perform approximate forward 

modelling calculations for moderate-scale 3D MT 

problems, which may provide a new way to improve 

the efficiency of electromagnetic inversions used with 

near real-time monitoring problems. It may also 

provide a rapid forward modelling method for 

Bayesian inversions, which may require millions of 

forward calculations in 3D cases. 
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Figure 2: comparison of the XY polarization MT Ex field responses of the COMMEMI-3D2 model. Panels a), b) represent 

the result from full order and reduced order systems; c) shows difference between a) and b); 
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